
Chapter 10

Extending the Limits of
Tractability

Although we started the book by studying a number of techniques for solving

problems efficiently, we’ve been looking for a while at classes of problems—

NP-complete and PSPACE-complete problems—for which no efficient solution

is believed to exist. And because of the insights we’ve gained this way,

we’ve implicitly arrived at a two-pronged approach to dealing with new

computational problems we encounter: We try for a while to develop an

efficient algorithm; and if this fails, we then try to prove it NP-complete (or

even PSPACE-complete). Assuming one of the two approaches works out, you

end up either with a solution to the problem (an algorithm), or a potent

“reason” for its difficulty: It is as hard as many of the famous problems in

computer science.

Unfortunately, this strategy will only get you so far. If there is a problem

that people really want your help in solving, they won’t be particularly satisfied

with the resolution that it’s NP-hard1 and that they should give up on it. They’ll

still want a solution that’s as good as possible, even if it’s not the exact, or

optimal, answer. For example, in the Independent Set Problem, even if we can’t

find the largest independent set in a graph, it’s still natural to want to compute

for as much time as we have available, and output as large an independent set

as we can find.

The next few topics in the book will be focused on different aspects

of this notion. In Chapters 11 and 12, we’ll look at algorithms that provide

approximate answers with guaranteed error bounds in polynomial time; we’ll

also consider local search heuristics that are often very effective in practice,

1 We use the term NP-hard to mean “at least as hard as an NP-complete problem.” We avoid referring to

optimization problems as NP-complete, since technically this term applies only to decision problems.

554 Chapter 10 Extending the Limits of Tractability

even when we are not able to establish any provable guarantees about their

behavior.

But to start, we explore some situations in which one can exactly solve

instances of NP-complete problems with reasonable efficiency. How do these

situations arise? The point is to recall the basic message of NP-completeness:

the worst-case instances of these problems are very difficult and not likely to

be solvable in polynomial time. On a particular instance, however, it’s possible

that we are not really in the “worst case”—maybe, in fact, the instance we’re

looking at has some special structure that makes our task easier. Thus the crux

of this chapter is to look at situations in which it is possible to quantify some

precise senses in which an instance may be easier than the worst case, and to

take advantage of these situations when they occur.

We’ll look at this principle in several concrete settings. First we’ll consider

the Vertex Cover Problem, in which there are two natural “size” parameters for

a problem instance: the size of the graph, and the size of the vertex cover being

sought. The NP-completeness of Vertex Cover suggests that we will have to

be exponential in (at least) one of these parameters; but judiciously choosing

which one can have an enormous effect on the running time.

Next we’ll explore the idea that many NP-complete graph problems be-

come polynomial-time solvable if we require the input to be a tree. This is

a concrete illustration of the way in which an input with “special structure”

can help us avoid many of the difficulties that can make the worst case in-

tractable. Armed with this insight, one can generalize the notion of a tree to

a more general class of graphs—those with small tree-width—and show that

many NP-complete problems are tractable on this more general class as well.

Having said this, we should stress that our basic point remains the same

as it has always been: Exponential algorithms scale very badly. The current

chapter represents ways of staving off this problem that can be effective in

various settings, but there is clearly no way around it in the fully general case.

This will motivate our focus on approximation algorithms and local search in

subsequent chapters.

10.1 Finding Small Vertex Covers
Let us briefly recall the Vertex Cover Problem, which we saw in Chapter 8

when we covered NP-completeness. Given a graph G = (V , E) and an integer

k, we would like to find a vertex cover of size at most k—that is, a set of nodes

S ⊆ V of size |S| ≤ k, such that every edge e ∈ E has at least one end in S.

Like many NP-complete decision problems, Vertex Cover comes with two

parameters: n, the number of nodes in the graph, and k, the allowable size of

10.1 Finding Small Vertex Covers 555

a vertex cover. This means that the range of possible running-time bounds is

much richer, since it involves the interplay between these two parameters.

The Problem

Let’s consider this interaction between the parameters n and k more closely.

First of all, we notice that if k is a fixed constant (e.g., k = 2 or k = 3), then

we can solve Vertex Cover in polynomial time: We simply try all subsets of V

of size k, and see whether any of them constitute a vertex cover. There are
(n
k

)

subsets, and each takes time O(kn) to check whether it is a vertex cover, for a

total time of O(kn
(n
k

)

) = O(knk+1). So from this we see that the intractability

of Vertex Cover only sets in for real once k grows as a function of n.

However, even for moderately small values of k, a running time of

O(knk+1) is quite impractical. For example, if n = 1,000 and k = 10, then on

a computer executing a million high-level instructions per second, it would

take at least 1024 seconds to decide if G has a k-node vertex cover—which is

several orders of magnitude larger than the age of the universe. And this is for

a small value of k, where the problem was supposed to be more tractable! It’s

natural to start asking whether we can do something that is practically viable

when k is a small constant.

It turns out that a much better algorithm can be developed, with a running-

time bound of O(2k · kn). There are two things worth noticing about this. First,

plugging in n = 1,000 and k = 10, we see that our computer should be able to

execute the algorithm in a few seconds. Second, we see that as k grows, the

running time is still increasing very rapidly; it’s simply that the exponential

dependence on k has been moved out of the exponent on n and into a separate

function. From a practical point of view, this is much more appealing.

Designing the Algorithm

As a first observation, we notice that if a graph has a small vertex cover, then

it cannot have very many edges. Recall that the degree of a node is the number

of edges that are incident to it.

(10.1) If G = (V , E) has n nodes, the maximum degree of any node is at most

d, and there is a vertex cover of size at most k, then G has at most kd edges.

Proof. Let S be a vertex cover in G of size k′ ≤ k. Every edge in G has at least

one end in S; but each node in S can cover at most d edges. Thus there can

be at most k′d ≤ kd edges in G.

Since the degree of any node in a graph can be at most n − 1, we have the

following simple consequence of (10.1).

556 Chapter 10 Extending the Limits of Tractability

(10.2) If G = (V , E) has n nodes and a vertex cover of size k, then G has at

most k(n − 1) ≤ kn edges.

So, as a first step in our algorithm, we can check if G contains more than

kn edges; if it does, then we know that the answer to the decision problem—

Is there a vertex cover of size at most k?—is no. Having done this, we will

assume that G contains at most kn edges.

The idea behind the algorithm is conceptually very clean. We begin by

considering any edge e = (u, v) in G. In any k-node vertex cover S of G, one

of u or v must belong to S. Suppose that u belongs to such a vertex cover S.

Then if we delete u and all its incident edges, it must be possible to cover the

remaining edges by at most k − 1 nodes. That is, defining G−{u} to be the

graph obtained by deleting u and all its incident edges, there must be a vertex

cover of size at most k − 1 in G−{u}. Similarly, if v belongs to S, this would

imply there is a vertex cover of size at most k − 1 in G−{v}.
Here is a concrete way to formulate this idea.

(10.3) Let e = (u, v) be any edge of G. The graph G has a vertex cover of size

at most k if and only if at least one of the graphs G−{u} and G−{v} has a

vertex cover of size at most k − 1.

Proof. First, suppose G has a vertex cover S of size at most k. Then S contains

at least one of u or v; suppose that it contains u. The set S−{u} must cover

all edges that have neither end equal to u. Therefore S−{u} is a vertex cover

of size at most k − 1 for the graph G−{u}.
Conversely, suppose that one of G−{u} and G−{v} has a vertex cover of

size at most k − 1—suppose in particular that G−{u} has such a vertex cover

T. Then the set T ∪ {u} covers all edges in G, so it is a vertex cover for G of

size at most k.

Statement (10.3) directly establishes the correctness of the following re-

cursive algorithm for deciding whether G has a k-node vertex cover.

To search for a k-node vertex cover in G:

If G contains no edges, then the empty set is a vertex cover

If G contains> k |V| edges, then it has no k-node vertex cover

Else let e = (u, v) be an edge of G

Recursively check if either of G−{u} or G−{v}
has a vertex cover of size k − 1

If neither of them does, then G has no k-node vertex cover

10.1 Finding Small Vertex Covers 557

Else, one of them (say, G−{u}) has a (k − 1)-node vertex cover T

In this case, T ∪ {u} is a k-node vertex cover of G

Endif

Endif

Analyzing the Algorithm

Now we bound the running time of this algorithm. Intuitively, we are searching

a “tree of possibilities”; we can picture the recursive execution of the algorithm

as giving rise to a tree, in which each node corresponds to a different recursive

call. A node corresponding to a recursive call with parameter k has, as children,

two nodes corresponding to recursive calls with parameter k − 1. Thus the tree

has a total of at most 2k+1 nodes. In each recursive call, we spend O(kn) time.

Thus, we can prove the following.

(10.4) The running time of the Vertex Cover Algorithm on an n-node graph,

with parameter k, is O(2k · kn).

We could also prove this by a recurrence as follows. If T(n, k) denotes the

running time on an n-node graph with parameter k, then T(·, ·) satisfies the

following recurrence, for some absolute constant c:

T(n, 1) ≤ cn,

T(n, k) ≤ 2T(n, k − 1) + ckn.

By induction on k ≥ 1, it is easy to prove that T(n, k) ≤ c · 2kkn. Indeed, if this

is true for k − 1, then

T(n, k) ≤ 2T(n − 1, k − 1) + ckn

≤ 2c · 2k−1(k − 1)n + ckn

= c · 2kkn − c · 2kn + ckn

≤ c · 2kkn.

In summary, this algorithm is a powerful improvement on the simple brute-

force approach. However, no exponential algorithm can scale well for very

long, and that includes this one. Suppose we want to know whether there is a

vertex cover with at most 40 nodes, rather than 10; then, on the same machine

as before, our algorithm will take a significant number of years to terminate.

558 Chapter 10 Extending the Limits of Tractability

10.2 Solving NP-Hard Problems on Trees
In Section 10.1 we designed an algorithm for the Vertex Cover Problem that

works well when the size of the desired vertex cover is not too large. We saw

that finding a relatively small vertex cover is much easier than the Vertex Cover

Problem in its full generality.

Here we consider special cases of NP-complete graph problems with a

different flavor—not when the natural “size” parameters are small, but when

the input graph is structurally “simple.” Perhaps the simplest types of graphs

are trees. Recall that an undirected graph is a tree if it is connected and has

no cycles. Not only are trees structurally easy to understand, but it has been

found that many NP-hard graph problems can be solved efficiently when

the underlying graph is a tree. At a qualitative level, the reason for this

is the following: If we consider a subtree of the input rooted at some node

v, the solution to the problem restricted to this subtree only “interacts” with

the rest of the tree through v. Thus, by considering the different ways in which

v might figure in the overall solution, we can essentially decouple the problem

in v’s subtree from the problem in the rest of the tree.

It takes some amount of effort to make this general approach precise and to

turn it into an efficient algorithm. Here we will see how to do this for variants

of the Independent Set Problem; however, it is important to keep in mind that

this principle is quite general, and we could equally well have considered many

other NP-complete graph problems on trees.

First we will see that the Independent Set Problem itself can be solved

by a greedy algorithm on a tree. Then we will consider the generalization

called the Maximum-Weight Independent Set Problem, in which nodes have

weight, and we seek an independent set of maximum weight. We’ll see that

the Maximum-Weight Independent Set Problem can be solved on trees via

dynamic programming, using a fairly direct implementation of the intuition

described above.

A Greedy Algorithm for Independent Set on Trees

The starting point of our greedy algorithm on a tree is to consider the way a

solution looks from the perspective of a single edge; this is a variant on an

idea from Section 10.1. Specifically, consider an edge e = (u, v) in G. In any

independent set S of G, at most one of u or v can belong to S. We’d like to find

an edge e for which we can greedily decide which of the two ends to place in

our independent set.

For this we exploit a crucial property of trees: Every tree has at least

one leaf—a node of degree 1. Consider a leaf v, and let (u, v) be the unique

edge incident to v. How might we “greedily” evaluate the relative benefits of

10.2 Solving NP-Hard Problems on Trees 559

including u or v in our independent set S? If we include v, the only other node

that is directly “blocked” from joining the independent set is u. If we include

u, it blocks not only v but all the other nodes joined to u as well. So if we’re

trying to maximize the size of the independent set, it seems that including v

should be better than, or at least as good as, including u.

(10.5) If T = (V , E) is a tree and v is a leaf of the tree, then there exists a

maximum-size independent set that contains v.

Proof. Consider a maximum-size independent set S, and let e = (u, v) be the

unique edge incident to node v. Clearly, at least one of u or v is in S; for if

neither is present, then we could add v to S, thereby increasing its size. Now, if

v ∈ S, then we are done; and if u ∈ S, then we can obtain another independent

set S′ of the same size by deleting u from S and inserting v.

We will use (10.5) repeatedly to identify and delete nodes that can be

placed in the independent set. As we do this deletion, the tree T may become

disconnected. So, to handle things more cleanly, we actually describe our

algorithm for the more general case in which the underlying graph is a forest—

a graph in which each connected component is a tree. We can view the problem

of finding a maximum-size independent set for a forest as really being the same

as the problem for trees: an optimal solution for a forest is simply the union

of optimal solutions for each tree component, and we can still use (10.5) to

think about the problem in any component.

Specifically, suppose we have a forest F ; then (10.5) allows us to make our

first decision in the following greedy way. Consider again an edge e = (u, v),

where v is a leaf. We will include node v in our independent set S, and not

include node u. Given this decision, we can delete the node v (since it’s already

been included) and the node u (since it cannot be included) and obtain a

smaller forest. We continue recursively on this smaller forest to get a solution.

To find a maximum-size independent set in a forest F:

Let S be the independent set to be constructed (initially empty)

While F has at least one edge

Let e = (u, v) be an edge of F such that v is a leaf

Add v to S

Delete from F nodes u and v, and all edges incident to them

Endwhile

Return S

560 Chapter 10 Extending the Limits of Tractability

(10.6) The above algorithm finds a maximum-size independent set in forests

(and hence in trees as well).

Although (10.5) was a very simple fact, it really represents an application of

one of the design principles for greedy algorithms that we saw in Chapter 4: an

exchange argument. In particular, the crux of our Independent Set Algorithm

is the observation that any solution not containing a particular leaf can be

“transformed” into a solution that is just as good and contains the leaf.

To implement this algorithm so it runs quickly, we need to maintain the

current forest F in a way that allows us to find an edge incident to a leaf

efficiently. It is not hard to implement this algorithm in linear time: We need

to maintain the forest in a way that allows us to do so on one iteration of the

While loop in time proportional to the number of edges deleted when u and

v are removed.

The Greedy Algorithm on More General Graphs The greedy algorithm spec-

ified above is not guaranteed to work on general graphs, because we cannot

be guaranteed to find a leaf in every iteration. However, (10.5) does apply to

any graph: if we have an arbitrary graph G with an edge (u, v) such that u is

the only neighbor of v, then it’s always safe to put v in the independent set,

delete u and v, and iterate on the smaller graph.

So if, by repeatedly deleting degree-1 nodes and their neighbors, we’re

able to eliminate the entire graph, then we’re guaranteed to have found an

independent set of maximum size—even if the original graph was not a tree.

And even if we don’t manage to eliminate the whole graph, we may still

succeed in running a few iterations of the algorithm in succession, thereby

shrinking the size of the graph and making other approaches more tractable.

Thus our greedy algorithm is a useful heuristic to try “opportunistically”

on arbitrary graphs, in the hope of making progress toward finding a large

independent set.

Maximum-Weight Independent Set on Trees

Next we turn to the more complex problem of finding a maximum-weight

independent set. As before, we assume that our graph is a tree T = (V , E).

Now we also have a positive weight wv associated with each node v ∈ V. The

Maximum-Weight Independent Set Problem is to find an independent set S in

the graph T = (V , E) so that the total weight
∑

v∈S wv is as large as possible.

First we try the idea we used before to build a greedy solution for the case

without weights. Consider an edge e = (u, v), such that v is a leaf. Including v

blocks fewer nodes from entering the independent set; so, if the weight of v is

10.2 Solving NP-Hard Problems on Trees 561

at least as large as the weight of u, then we can indeed make a greedy decision

just as we did in the case without weights. However, if wv < wu, we face a

dilemma: We acquire more weight by including u, but we retain more options

down the road if we include v. There seems to be no easy way to resolve

this locally, without considering the rest of the graph. However, there is still

something we can say. If node u has many neighbors v1, v2, . . . that are leaves,

then we should make the same decision for all of them: Once we decide not

to include u in the independent set, we may as well go ahead and include all

its adjacent leaves. So for the subtree consisting of u and its adjacent leaves,

we really have only two “reasonable” solutions to consider: including u, or

including all the leaves.

We will use these ideas to design a polynomial-time algorithm using dy-

namic programming. As we recall, dynamic programming allows us to record

a few different solutions, build these up through a sequence of subproblems,

and thereby decide only at the end which of these possibilities will be used in

the overall solution.

The first issue to decide for a dynamic programming algorithm is what our

subproblems will be. For Maximum-Weight Independent Set, we will construct

subproblems by rooting the tree T at an arbitrary node r; recall that this is the

operation of “orienting” all the tree’s edges away from r. Specifically, for any

node u �= r, the parent p(u) of u is the node adjacent to u along the path from

the root r. The other neighbors of u are its children, and we will use children(u)

to denote the set of children of u. The node u and all its descendants form a

subtree Tu whose root is u.

We will base our subproblems on these subtrees Tu. The tree Tr is our

original problem. If u �= r is a leaf, then Tu consists of a single node. For a

node u all of whose children are leaves, we observe that Tu is the kind of

subtree discussed above.

To solve the problem by dynamic programming, we will start at the leaves

and gradually work our way up the tree. For a node u, we want to solve the

subproblem associated with the tree Tu after we have solved the subproblems

for all its children. To get a maximum-weight independent set S for the tree Tu,

we will consider two cases: Either we include the node u in S or we do not. If

we include u, then we cannot include any of its children; if we do not include

u, then we have the freedom to include or omit these children. This suggests

that we should define two subproblems for each subtree Tu: the subproblem

OPTin(u) will denote the maximum weight of an independent set of Tu that

includes u, and the subproblem OPTout(u) will denote the maximum weight of

an independent set of Tu that does not include u.

562 Chapter 10 Extending the Limits of Tractability

Now that we have our subproblems, it is not hard to see how to compute

these values recursively. For a leaf u �= r, we have OPTout(u) = 0 and OPTin(u) =
wu. For all other nodes u, we get the following recurrence that defines OPTout(u)

and OPTin(u) using the values for u’s children.

(10.7) For a node u that has children, the following recurrence defines the

values of the subproblems:

. OPTin(u) = wu +
∑

v∈children(u)

OPTout(v)

. OPTout(u) =
∑

v∈children(u)

max(OPTout(v), OPTin(v)).

Using this recurrence, we get a dynamic programming algorithm by build-

ing up the optimal solutions over larger and larger subtrees. We define arrays

Mout[u]and Min[u], which hold the values OPTout(u) and OPTin(u), respectively.

For building up solutions, we need to process all the children of a node before

we process the node itself; in the terminology of tree traversal, we visit the

nodes in post-order.

To find a maximum-weight independent set of a tree T:

Root the tree at a node r

For all nodes u of T in post-order

If u is a leaf then set the values:

Mout[u]= 0

Min[u]= wu

Else set the values:

Mout[u]=
∑

v∈children(u)

max(Mout[u], Min[u])

Min[u]= wu +
∑

v∈children(u)

Mout[u].

Endif

Endfor

Return max(Mout[r], Min[r])

This gives us the value of the maximum-weight independent set. Now, as

is standard in the dynamic programming algorithms we’ve seen before, it’s

easy to recover an actual independent set of maximum weight by recording

the decision we make for each node, and then tracing back through these

decisions to determine which nodes should be included. Thus we have

(10.8) The above algorithm finds a maximum-weight independent set in trees

in linear time.

10.3 Coloring a Set of Circular Arcs 563

10.3 Coloring a Set of Circular Arcs
Some years back, when telecommunications companies began focusing inten-

sively on a technology known as wavelength-division multiplexing, researchers

at these companies developed a deep interest in a previously obscure algorith-

mic question: the problem of coloring a set of circular arcs.

After explaining how the connection came about, we’ll develop an al-

gorithm for this problem. The algorithm is a more complex variation on the

theme of Section 10.2: We approach a computationally hard problem using

dynamic programming, building up solutions over a set of subproblems that

only “interact” with each other on very small pieces of the input. Having to

worry about only this very limited interaction serves to control the complexity

of the algorithm.

The Problem

Let’s start with some background on how network routing issues led to the

question of circular-arc coloring. Wavelength-division multiplexing (WDM) is

a methodology that allows multiple communication streams to share a single

portion of fiber-optic cable, provided that the streams are transmitted on this

cable using different wavelengths. Let’s model the underlying communication

network as a graph G = (V , E), with each communication stream consisting of

a path Pi in G; we imagine data flowing along this stream from one endpoint of

Pi to the other. If the paths Pi and Pj share some edge in G, it is still possible to

send data along these two streams simultaneously as long as they are routed

using different wavelengths. So our goal is the following: Given a set of k

available wavelengths (labeled 1, 2, . . . , k), we wish to assign a wavelength

to each stream Pi in such a way that each pair of streams that share an edge in

the graph are assigned different wavelengths. We’ll refer to this as an instance

of the Path Coloring Problem, and we’ll call a solution to this instance—a legal

assignment of wavelengths to paths—a k-coloring.

This is a natural problem that we could consider as it stands; but from the

point of view of the fiber-optic routing context, it is useful to make one further

simplification. Many applications of WDM take place on networks G that are

extremely simple in structure, and so it is natural to restrict the instances of

Path Coloring by making some assumptions about this underlying network

structure. In fact, one of the most important special cases in practice is also

one of the simplest: when the underlying network is simply a ring; that is, it

can be modeled using a graph G that is a cycle on n nodes.

This is the case we will focus on here: We are given a graph G = (V , E)

that is a cycle on n nodes, and we are given a set of paths P1, . . . , Pm on this

cycle. The goal, as above, is to assign one of k given wavelengths to each path

564 Chapter 10 Extending the Limits of Tractability

a

b

c

d

e

f

Figure 10.1 An instance of the Circular-Arc Coloring Problemwith six arcs (a, b, c, d, e, f)

on a four-node cycle.

Pi so that overlapping paths receive different wavelengths. We will refer to

this as a valid assignment of wavelengths to the paths. Figure 10.1 shows a

sample instance of this problem. In this instance, there is a valid assignment

using k = 3 wavelengths, by assigning wavelength 1 to the paths a and e,

wavelength 2 to the paths b and f , and wavelength 3 to the paths c and d.

From the figure, we see that the underlying cycle network can be viewed as a

circle, and the paths as arcs on this circle; hence we will refer to this special

case of Path Coloring as the Circular-Arc Coloring Problem.

The Complexity of Circular-Arc Coloring It’s not hard to see that Circular-

Arc Coloring can be directly reduced to Graph Coloring. Given an instance of

Circular-Arc Coloring, we define a graph H that has a node zi for each path

Pi, and we connect nodes zi and zj in H if the paths Pi and Pj share an edge

in G. Now, routing all streams using k wavelengths is simply the problem

of coloring H using at most k colors. (In fact, this problem is yet another

application of graph coloring in which the abstract “colors,” since they encode

different wavelengths of light, are actually colors.)

10.3 Coloring a Set of Circular Arcs 565

Note that this doesn’t imply that Circular-Arc Coloring is NP-complete—

all we’ve done is to reduce it to a known NP-complete problem, which doesn’t

tell us anything about its difficulty. For Path Coloring on general graphs, in fact,

it is easy to reduce from Graph Coloring to Path Coloring, thereby establishing

that Path Coloring is NP-complete. However, this straightforward reduction

does not work when the underlying graph is as simple as a cycle. So what is

the complexity of Circular-Arc Coloring?

It turns out that Circular-Arc Coloring can be shown to be NP-complete

using a very complicated reduction. This is bad news for people working

with optical networks, since it means that optimal wavelength assignment

is unlikely to be efficiently solvable. But, in fact, the known reductions that

show Circular-Arc Coloring is NP-complete all have the following interesting

property: The hard instances of Circular-Arc Coloring that they produce all

involve a set of available wavelengths that is quite large. So, in particular,

these reductions don’t show that the Circular-Arc Coloring is hard in the case

when the number of wavelengths is small; they leave open the possibility that

for every fixed, constant number of wavelengths k, it is possible to solve the

wavelength assignment problem in time polynomial in n (the size of the cycle)

and m (the number of paths). In other words, we could hope for a running

time of the form we saw for Vertex Cover in Section 10.1: O(f (k) · p(n, m)),

where f (·) may be a rapidly growing function but p(·, ·) is a polynomial.

Such a running time would be appealing (assuming f (·) does not grow too

outrageously), since it would make wavelength assignment potentially feasible

when the number of wavelengths is small. One way to appreciate the challenge

in obtaining such a running time is to note the following analogy: The general

Graph Coloring Problem is already hard for three colors. So if Circular-Arc

Coloring were tractable for each fixed number of wavelengths (i.e., colors) k,

it would show that it’s a special case of Graph Coloring with a qualitatively

different complexity.

The goal of this section is to design an algorithm with this type of running

time, O(f (k) · p(n, m)). As suggested at the beginning of the section, the

algorithm itself builds on the intuition we developed in Section 10.2 when

solving Maximum-Weight Independent Set on trees. There the difficult search

inherent in finding a maximum-weight independent set was made tractable

by the fact that for each node v in a tree T, the problems in the components

of T −{v} became completely decoupled once we decided whether or not to

include v in the independent set. This is a specific example of the general

principle of fixing a small set of decisions, and thereby separating the problem

into smaller subproblems that can be dealt with independently.

The analogous idea here will be to choose a particular point on the cycle

and decide how to color the arcs that cross over this point; fixing these degrees

566 Chapter 10 Extending the Limits of Tractability

of freedom allows us to define a series of smaller and smaller subproblems on

the remaining arcs.

Designing the Algorithm

Let’s pin down some notation we’re going to use. We have a graph G that is

a cycle on n nodes; we denote the nodes by v1, v2, . . . , vn, and there is an

edge (vi, vi+1) for each i, and also an edge (vn, v1). We have a set of paths

P1, P2, . . . , Pm in G, we have a set of k available colors; we want to color the

paths so that if Pi and Pj share an edge, they receive different colors.

A Simple Special Case: Interval Coloring In order to build up to an algorithm

for Circular-Arc Coloring, we first briefly consider an easier coloring problem:

the problem of coloring intervals on a line. This can be viewed as a special

case of Circular-Arc Coloring in which the arcs lie only in one hemisphere; we

will see that once we do not have difficulties from arcs “wrapping around,”

the problem becomes much simpler. So in this special case, we are given a set

of intervals, and we must label each one with a number in such a way that

any two overlapping intervals receive different labels.

We have actually seen exactly this problem before: It is the Interval

Partitioning (or Interval Coloring) Problem for which we gave an optimal

greedy algorithm at the end of Section 4.1. In addition to showing that there

is an efficient, optimal algorithm for coloring intervals, our analysis in that

earlier section revealed a lot about the structure of the problem. Specifically,

if we define the depth of a set of intervals to be the maximum number that

pass over any single point, then our greedy algorithm from Chapter 4 showed

that the minimum number of colors needed is always equal to the depth. Note

that the number of colors required is clearly at least the depth, since intervals

containing a common point need different colors; the key here is that one never

needs a number of colors that is greater than the depth.

It is interesting that this exact relationship between the number of colors

and the depth does not hold for collections of arcs on a circle. In Figure 10.2, for

example, we see a collection of circular arcs that has depth 2 but needs three

colors. This is a basic reflection of the fact that in trying to color a collection of

circular arcs, one encounters “long-range” obstacles that render the problem

much more complex than the coloring problem for intervals on a line. Despite

this, we will see that thinking about the simpler problem of coloring intervals

will be useful in designing our algorithm for Circular-Arc Coloring.

Transforming to an Interval Coloring Problem We now return to the

Circular-Arc Coloring Problem. For now, we will consider a special case of

the problem in which, for each edge e of the cycle, there are exactly k paths

that contain e. We will call this the uniform-depth case. It turns out that al-

10.3 Coloring a Set of Circular Arcs 567

Figure 10.2 A collection of circular arcs needing three colors, even though at most two

arcs pass over any point of the circle.

though this special case may seem fairly restricted, it contains essentially the

whole complexity of the problem; once we have an algorithm for the uniform-

depth case, it will be easy to translate this to an algorithm for the problem in

general.

The first step in designing an algorithm will be to transform the instance

into a modified form of Interval Coloring: We “cut” the cycle by slicing through

the edge (vn, v1), and then “unroll” the cycle into a path G′. This process is

illustrated in Figure 10.3. The sliced-and-unrolled graph G′ has the same nodes

as G, plus two extra ones where the slicing occurred: a node v0 adjacent to v1

(and no other nodes), and a node vn+1 adjacent to vn (and no other nodes).

Also, the set of paths has changed slightly. Suppose that P1, P2, . . . , Pk are the

paths that contained the edge (vn, v1) in G. Each of these paths Pi has now

been sliced into two, one that we’ll label P′
i (starting at v0) and one that we’ll

label P′′
i (ending at vn+1).

Now this is an instance of Interval Coloring, and it has depth k. Thus,

following our discussion above about the relation between depth and colors,

we see that the intervals

P′
1, P′

2, . . . , P′
k, Pk+1, . . . , Pm, P′′

1 , P′′
2 , . . . , P′′

k

can be colored using k colors. So are we done? Can we just translate this

solution into a solution for the paths on G?

In fact, this is not so easy; the problem is that our interval coloring may

well not have given the paths P′
i and P′′

i the same color. Since these are two

568 Chapter 10 Extending the Limits of Tractability

a

b

c

d

e

f

b�

c �a�

c� a �

d

e

f b �

(a)

(b)

Cut

The colorings of {a�, b�, c�}
and {a � , b � , c � } must be
consistent.

Figure 10.3 (a) Cutting through the cycle in an instance of Circular-Arc Coloring, and

then unrolling it so it becomes, in (b), a collection of intervals on a line.

pieces of the same path Pi on G, it’s not clear how to take the differing colors

of P′
i and P′′

i and infer from this how to color Pi on G. For example, having

sliced open the cycle in Figure 10.3(a), we get the set of intervals pictured in

Figure 10.3(b). Suppose we compute a coloring so that the intervals in the first

row get the color 1, those in the second row get the color 2, and those in the

third row get the color 3. Then we don’t have an obvious way to figure out a

color for a and c.

This suggests a way to formalize the relationship between the instance of

Circular-Arc Coloring in G and the instance of Interval Coloring in G′.

10.3 Coloring a Set of Circular Arcs 569

(10.9) The paths in G can be k-colored if and only if the paths in G′ can be

k-colored subject to the additional restriction that P′
i and P′′

i receive the same

color, for each i = 1, 2, . . . , k.

Proof. If the paths in G can be k-colored, then we simply use these as the colors

in G′, assigning each of P′
i and P′′

i the color of Pi. In the resulting coloring, no

two paths with the same color have an edge in common.

Conversely, suppose the paths in G′ can be k-colored subject to the

additional restriction that P′
i and P′′

i receive the same color, for each i =
1, 2, . . . , k. Then we assign path Pi (for i ≤ k) the common color of P′

i and

P′′
i ; and we assign path Pj (for j > k) the color that Pj gets in G′. Again, under

this coloring, no two paths with the same color have an edge in common.

We’ve now transformed our problem into a search for a coloring of the

paths in G′ subject to the condition in (10.9): The paths P′
i and P′′

i (for 1≤ i ≤ k)

should get the same color.

Before proceeding, we introduce some further terminology that makes it

easier to talk about algorithms for this problem. First, since the names of the

colors are arbitrary, we can assume that path P′
i is assigned the color i for

each i = 1, 2, . . . , k. Now, for each edge ei = (vi, vi+1), we let Si denote the

set of paths that contain this edge. A k-coloring of just the paths in Si has a

very simple structure: it is simply a way of assigning exactly one of the colors

{1, 2, . . . , k} to each of the k paths in Si. We will think of such a k-coloring as

a one-to-one function f : Si → {1, 2, . . . , k}.
Here’s the crucial definition: We say that a k-coloring f of Si and a k-

coloring g of Sj are consistent if there is a single k-coloring of all the paths

that is equal to f on Si, and also equal to g on Sj. In other words, the k-

colorings f and g on restricted parts of the instance could both arise from a

single k-coloring of the whole instance. We can state our problem in terms of

consistency as follows: If f ′ denotes the k-coloring of S0 that assigns color i to

P′
i, and f ′′ denotes the k-coloring of Sn that assigns color i to P′′

i , then we need

to decide whether f ′ and f ′′ are consistent.

Searching for an Acceptable Interval Coloring It is not clear how to decide

the consistency of f ′ and f ′′ directly. Instead, we adopt a dynamic programming

approach by building up the solution through a series of subproblems.

The subproblems are as follows: For each set Si, working in order over

i = 0, 1, 2, . . . , n, we will compute the set Fi of all k-colorings on Si that are

consistent with f ′. Once we have computed Fn, we need only check whether

it contains f ′′ in order to answer our overall question: whether f ′ and f ′′ are

consistent.

570 Chapter 10 Extending the Limits of Tractability

To start the algorithm, we define F0 = {f ′}: Since f ′ determines a color for

every interval in S0, clearly no other k-coloring of S0 can be consistent with

it. Now suppose we have computed F0, F1, . . . , Fi; we show how to compute

Fi+1 from Fi.

Recall that Si consists of the paths containing the edge ei = (vi, vi+1),

and Si+1 consists of the paths containing the next consecutive edge ei+1 =
(vi+1, vi+2). The paths in Si and Si+1 can be divided into three types:

. Those that contain both ei and ei+1. These lie in both Si and Si+1.

. Those that end at node vi+1. These lie in Si but not Si+1.

. Those that begin at node vi+1. These lie in Si+1 but not Si.

Now, for any coloring f ∈ Fi, we say that a coloring g of Si+1 is an extension

of f if all the paths in Si ∩ Si+1 have the same colors with respect to f and g. It

is easy to check that if g is an extension of f , and f is consistent with f ′, then

so is g. On the other hand, suppose some coloring g of Si+1 is consistent with

f ′; in other words, there is a coloring h of all paths that is equal to f ′ on S0 and

is equal to g on Si+1. Then, if we consider the colors assigned by h to paths in

Si, we get a coloring f ∈ Fi, and g is an extension of f .

This proves the following fact.

(10.10) The set Fi+1 is equal to the set of all extensions of k-colorings in Fi.

So, in order to compute Fi+1, we simply need to list all extensions of all

colorings in Fi. For each f ∈ Fi, this means that we want a list of all colorings g

of Si+1 that agree with f on Si ∩ Si+1. To do this, we simply list all possible ways

of assigning the colors of Si−Si+1 (with respect to f) to the paths in Si+1−Si.

Merging these lists for all f ∈ Fi then gives us Fi+1.

Thus the overall algorithm is as follows.

To determine whether f ′ and f ′′ are consistent:

Define F0 = {f ′}
For i = 1, 2, . . . , n

For each f ∈ Fi

Add all extensions of f to Fi+1

Endfor

Endfor

Check whether f ′′ is in Fn

Figure 10.4 shows the results of executing this algorithm on the example

of Figure 10.3. As with all the dynamic programming algorithms we have seen

in this book, the actual coloring can be computed by tracing back through the

steps that built up the sets F1, F2, . . . , Fn.

10.3 Coloring a Set of Circular Arcs 571

b�

c �a�

c� a �

d

e

f b �

3
2
1

1
2
3

3
2
1

1
2
3

3
2
1

1
2
3

3
2
1

1
2
3

2
3
1

2
1
3

Figure 10.4 The execution of the coloring algorithm. The initial coloring f ′ assigns
color 1 to a′, color 2 to b′, and color 3 to c′. Above each edge ei (for i > 0) is a table

representing the set of all consistent colorings in Fi: Each coloring is represented by

one of the columns in the table. Since the coloring f ′′(a′′) = 1, f ′′(b′′) = 2, and f ′′(c′′) = 3
appears in the final table, there is a solution to this instance.

We will discuss the running time of this algorithm in a moment. First,

however, we show how to remove the assumption that the input instance has

uniform depth.

Removing the Uniform-Depth Assumption Recall that the algorithm we just

designed assumes that for each edge e, exactly k paths contain e. In general,

each edge may carry a different number of paths, up to a maximum of k. (If

there were an edge contained in k + 1 paths, then all these paths would need a

different color, and so we could immediately conclude that the input instance

is not colorable with k colors.)

It is not hard to modify the algorithm directly to handle the general case,

but it is also easy to reduce the general case to the uniform-depth case. For

each edge ei that carries only ki < k paths, we add k − ki paths that consist

only of the single edge ei. We now have a uniform-depth instance, and we

claim

(10.11) The original instance can be colored with k colors if and only if the

modified instance (obtained by adding single-edge paths) can be colored with

k colors.

Proof. Clearly, if the modified instance has a k-coloring, then we can use this

same k-coloring for the original instance (simply ignoring the colors it assigns

to the single-edge paths that we added). Conversely, suppose the original

instance has a k-coloring f . Then we can construct a k-coloring of the modified

instance by starting with f and considering the extra single-edge paths one at

a time, assigning any free color to each of these paths as we consider them.

572 Chapter 10 Extending the Limits of Tractability

Analyzing the Algorithm

Finally, we bound the running time of the algorithm. This is dominated by the

time to compute the sets F1, F2, . . . , Fn. To build one of these sets Fi+1, we need

to consider each coloring f ∈ Fi, and list all permutations of the colors that f

assigns to paths in Si−Si+1. Since Si has k paths, the number of colorings in

Fi is at most k!. Listing all permutations of the colors that f assigns to Si−Si+1

also involves enumerating a set of size ℓ!, where ℓ ≤ k is the size of Si−Si+1.

Thus the total time to compute Fi+1 from one Fi has the form O(f (k)) for

a function f (·) that depends only on k. Over the n iterations of the outer loop

to compute F1, F2, . . . , Fn, this gives a total running time of O(f (k) · n), as

desired.

This concludes the description and analysis of the algorithm. We summa-

rize its properties in the following statement.

(10.12) The algorithm described in this section correctly determines whether

a collection of paths on an n-node cycle can be colored with k colors, and its

running time is O(f (k) · n) for a function f (·) that depends only on k.

Looking back on it, then, we see that the running time of the algorithm

came from the intuition we described at the beginning of the section: For

each i, the subproblems based on computing Fi and Fi+1 fit together along the

“narrow” interface consisting of the paths in just Si and Si+1, each of which

has size at most k. Thus the time needed to go from one to the other could

be made to depend only on k, and not on the size of the cycle G or on the

number of paths.

* 10.4 Tree Decompositions of Graphs
In the previous two sections, we’ve seen how particular NP-hard problems

(specifically, Maximum-Weight Independent Set and Graph Coloring) can be

solved when the input has a restricted structure. When you find yourself in

this situation—able to solve an NP-complete problem in a reasonably natural

special case—it’s worth asking why the approach doesn’t work in general. As

we discussed in Sections 10.2 and 10.3, our algorithms in both cases were

taking advantage of a particular kind of structure: the fact that the input could

be broken down into subproblems with very limited interaction.

For example, to solve Maximum-Weight Independent Set on a tree, we took

advantage of a special property of (rooted) trees: Once we decide whether or

not to include a node u in the independent set, the subproblems in each subtree

become completely separated; we can solve each as though the others did not

10.4 Tree Decompositions of Graphs 573

exist. We don’t encounter such a nice situation in general graphs, where there

might not be a node that “breaks the communication” between subproblems

in the rest of the graph. Rather, for the Independent Set Problem in general

graphs, decisions we make in one place seem to have complex repercussions

all across the graph.

So we can ask a weaker version of our question instead: For how general

a class of graphs can we use this notion of “limited interaction”—recursively

chopping up the input using small sets of nodes—to design efficient algorithms

for a problem like Maximum-Weight Independent Set?

In fact, there is a natural and rich class of graphs that supports this type

of algorithm; they are essentially “generalized trees,” and for reasons that

will become clear shortly, we will refer to them as graphs of bounded tree-

width. Just as with trees, many NP-complete problems are tractable on graphs

of bounded tree-width; and the class of graphs of bounded tree-width turns

out to have considerable practical value, since it includes many real-world

networks on which NP-complete graph problems arise. So, in a sense, this

type of graph serves as a nice example of finding the “right” special case of a

problem that simultaneously allows for efficient algorithms and also includes

graphs that arise in practice.

In this section, we define tree-width and give the general approach for

solving problems on graphs of bounded tree-width. In the next section, we

discuss how to tell whether a given graph has bounded tree-width.

Defining Tree-Width

We now give a precise definition for this class of graphs that is designed

to generalize trees. The definition is motivated by two considerations. First,

we want to find graphs that we can decompose into disconnected pieces by

removing a small number of nodes; this allows us to implement dynamic

programming algorithms of the type we discussed earlier. Second, we want to

make precise the intuition conveyed by “tree-like” drawings of graphs as in

Figure 10.5(b).

We want to claim that the graph G pictured in this figure is decomposable

in a tree-like way, along the lines that we’ve been considering. If we were to

encounter G as it is drawn in Figure 10.5(a), it might not be immediately clear

why this is so. In the drawing in Figure 10.5(b), however, we see that G is

really composed of ten interlocking triangles; and seven of the ten triangles

have the property that if we delete them, then the remainder of G falls apart into

disconnected pieces that recursively have this interlocking-triangle structure.

The other three triangles are attached at the extremities, and deleting them is

sort of like deleting the leaves of a tree.

574 Chapter 10 Extending the Limits of Tractability

(a) (b) (c)

Figure 10.5 Parts (a) and (b) depict the same graph drawn in different ways. The drawing

in (b) emphasizes the way in which it is composed of ten interlocking triangles. Part (c)

illustrates schematically how these ten triangles “fit together.”

So G is tree-like if we view it not as being composed of twelve nodes, as

we usually would, but instead as being composed of ten triangles. Although G

clearly contains many cycles, it seems, intuitively, to lack cycles when viewed

at the level of these ten triangles; and based on this, it inherits many of the

nice decomposition properties of a tree.

We will want to represent the tree-like structure of these triangles by

having each triangle correspond to a node in a tree, as shown in Figure 10.5(c).

Intuitively, the tree in this figure corresponds to this graph, with each node of

the tree representing one of the triangles. Notice, however, that the same nodes

of the graph occur in multiple triangles, even in triangles that are not adjacent

in the tree structure; and there are edges between nodes in triangles very

far away in the tree-structure—for example, the central triangle has edges to

nodes in every other triangle. How can we make the correspondence between

the tree and the graph precise? We do this by introducing the idea of a tree

decomposition of a graph G, so named because we will seek to decompose G

according to a tree-like pattern.

Formally, a tree decomposition of G = (V , E) consists of a tree T (on a

different node set from G), and a subset Vt ⊆ V associated with each node t of

T. (We will call these subsets Vt the “pieces” of the tree decomposition.) We

will sometimes write this as the ordered pair (T , {Vt : t ∈ T}). The tree T and

the collection of pieces {Vt : t ∈ T} must satisfy the following three properties.

10.4 Tree Decompositions of Graphs 575

. (Node Coverage) Every node of G belongs to at least one piece Vt.

. (Edge Coverage) For every edge e of G, there is some piece Vt containing

both ends of e.

. (Coherence) Let t1, t2, and t3 be three nodes of T such that t2 lies on the

path from t1 to t3. Then, if a node v of G belongs to both Vt1
and Vt3

, it

also belongs to Vt2
.

It’s worth checking that the tree in Figure 10.5(c) is a tree decomposition of

the graph using the ten triangles as the pieces.

Next consider the case when the graph G is a tree. We can build a tree

decomposition of it as follows. The decomposition tree T has a node tv for each

node v of G, and a node te for each edge e of G. The tree T has an edge (tv, te)

when v is an end of e. Finally, if v is a node, then we define the piece Vtv
= {v};

and if e = (u, v) is an edge, then we define the piece Vte
= {u, v}. One can now

check that the three properties in the definition of a tree decomposition are

satisfied.

Properties of a Tree Decomposition

If we consider the definition more closely, we see that the Node Coverage

and Edge Coverage Properties simply ensure that the collection of pieces

corresponds to the graph G in a minimal way. The crux of the definition is in the

Coherence Property. While it is not obvious from its statement that Coherence

leads to tree-like separation properties, in fact it does so quite naturally. Trees

have two nice separation properties, closely related to each other, that get used

all the time. One says that if we delete an edge e from a tree, it falls apart into

exactly two connected components. The other says that if we delete a node t

from a tree, then this is like deleting all the incident edges, and so the tree falls

apart into a number of components equal to the degree of t. The Coherence

Property is designed to guarantee that separations of T, of both these types,

correspond naturally to separations of G as well.

If T ′ is a subgraph of T, we use GT ′ to denote the subgraph of G induced

by the nodes in all pieces associated with nodes of T ′, that is, the set ∪t∈T ′Vt.

First consider deleting a node t of T.

(10.13) Suppose that T −t has components T1, . . . , Td. Then the subgraphs

GT1
−Vt , GT2

−Vt , . . . , GTd
−Vt

have no nodes in common, and there are no edges between them.

576 Chapter 10 Extending the Limits of Tractability

u

Vt

v

Gt1

Gt2

Gt3

No edge (u, v)

Figure 10.6 Separations of the tree T translate to separations of the graph G.

Proof. We refer to Figure 10.6 for a general view of what the separation looks

like. We first prove that the subgraphs GTi
−Vt do not share any nodes. Indeed,

any such node v would need to belong to both GTi
−Vt and GTj

−Vt for some

i �= j, and so such a node v belongs to some piece Vx with x ∈ Ti, and to some

piece Vy with y ∈ Tj. Since t lies on the x-y path in T, it follows from the

Coherence Property that v lies in Vt and hence belongs to neither GTi
−Vt nor

GTj
−Vt.

Next we must show that there is no edge e = (u, v) in G with one end u

in subgraph GTi
−Vt and the other end v in GTj

−Vt for some j �= i. If there

were such an edge, then by the Edge Coverage Property, there would need to

be some piece Vx containing both u and v. The node x cannot be in both the

subgraphs Ti and Tj. Suppose by symmetry x �∈ Ti. Node u is in the subgraph

GTi
, so u must be in a set Vy for some y in Ti. Then the node u belongs to both

Vx and Vy, and since t lies on the x-y path in T, it follows that u also belongs

to Vt, and so it does not lie in GTi
−Vt as required.

Proving the edge separation property is analogous. If we delete an edge

(x, y) from T, then T falls apart into two components: X, containing x, and Y,

10.4 Tree Decompositions of Graphs 577

u

Vy

v

No edge (u, v)

Vx

Vx � Vy

GX – Vx � Vy GY – Vx � Vy

Figure 10.7 Deleting an edge of the tree T translates to separation of the graph G.

containing y. Let’s establish the corresponding way in which G is separated

by this operation.

(10.14) Let X and Y be the two components of T after the deletion of the edge

(x, y). Then deleting the set Vx ∩ Vy from V disconnects G into the two subgraphs

GX −(Vx ∩ Vy) and GY −(Vx ∩ Vy) More precisely, these two subgraphs do not

share any nodes, and there is no edge with one end in each of them.

Proof. We refer to Figure 10.7 for a general view of what the separation looks

like. The proof of this property is analogous to the proof of (10.13). One first

proves that the two subgraphs GX −(Vx ∩ Vy) and GY −(Vx ∩ Vy) do not share

any nodes, by showing that a node v that belongs to both GX and GY must

belong to both Vx and to Vy, and hence it does not lie in either GY −(Vx ∩ Vy)

or GX −(Vx ∩ Vy).

Now we must show that there is no edge e = (u, v) in G with one end u

in GX −(Vx ∩ Vy) and the other end v in GY −(Vx ∩ Vy). If there were such an

edge, then by the Edge Coverage Property, there would need to be some piece

Vz containing both u and v. Suppose by symmetry that z ∈ X. Node v also

belongs to some piece Vw for w ∈ Y. Since x and y lie on the w-z path in T, it

follows that V belongs to Vx and Vy. Hence v ∈ Vx ∩ Vy, and so it does not lie

in GY −(Vx ∩ Vy) as required.

So tree decompositions are useful in that the separation properties of T

carry over to G. At this point, one might think that the key question is: Which

graphs have tree decompositions? But this is not the point, for if we think about

578 Chapter 10 Extending the Limits of Tractability

it, we see that of course every graph has a tree decomposition. Given any G,

we can let T be a tree consisting of a single node t, and let the single piece Vt

be equal to the entire node set of G. This easily satisfies the three properties

required by the definition; and such a tree decomposition is no more useful to

us than the original graph.

The crucial point, therefore, is to look for a tree decomposition in which all

the pieces are small. This is really what we’re trying to carry over from trees, by

requiring that the deletion of a very small set of nodes breaks apart the graph

into disconnected subgraphs. So we define the width of a tree decomposition

(T , {Vt}) to be one less than the maximum size of any piece Vt:

width(T , {Vt}) = max
t

|Vt| − 1.

We then define the tree-width of G to be the minimum width of any tree de-

composition of G. Due to the Edge Coverage Property, all tree decompositions

must have pieces with at least two nodes, and hence have tree-width at least

1. Recall that our tree decomposition for a tree G has tree-width 1, as the sets

Vt each have either one or two nodes. The somewhat puzzling “–1” in this

definition is so that trees turn out to have tree-width 1, rather than 2. Also, all

graphs with a nontrivial tree decomposition of tree-width w have separators of

size w, since if (x, y) is an edge of the tree, then, by (10.14), deleting Vx ∩ Vy

separates G into two components.

Thus we can talk about the set of all graphs of tree-width 1, the set of all

graphs of tree-width 2, and so forth. The following fact establishes that trees

are the only graphs with tree-width 1, and hence our definitions here indeed

generalize the notion of a tree. The proof also provides a good way for us to

exercise some of the basic properties of tree decompositions. We also observe

that the graph in Figure 10.5 is thus, according to the notion of tree-width,

a member of the next “simplest” class of graphs after trees: It is a graph of

tree-width 2.

(10.15) A connected graph G has tree-width 1 if and only if it is a tree.

Proof. We have already seen that if G is a tree, then we can build a tree

decomposition of tree-width 1 for G.

To prove the converse, we first establish the following useful fact: If H is

a subgraph of G, then the tree-width of H is at most the tree-width of G. This

is simply because, given a tree decomposition (T , {Vt}) of G, we can define a

tree decomposition of H by keeping the same underlying tree T and replacing

each piece Vt with Vt ∩ H. It is easy to check that the required three properties

still hold. (The fact that certain pieces may now be equal to the empty set does

not pose a problem.)

10.4 Tree Decompositions of Graphs 579

Now suppose by way of contradiction that G is a connected graph of tree-

width 1 that is not a tree. Since G is not a tree, it has a subgraph consisting of a

simple cycle C. By our argument from the previous paragraph, it is now enough

for us to argue that the graph C does not have tree-width 1. Indeed, suppose

it had a tree decomposition (T , {Vt}) in which each piece had size at most 2.

Choose any two edges (u, v) and (u′, v′) of C; by the Edge Coverage Property,

there are pieces Vt and Vt′ containing them. Now, on the path in T from t to

t′ there must be an edge (x, y) such that the pieces Vx and Vy are unequal. It

follows that |Vx ∩ Vy| ≤ 1. We now invoke (10.14): Defining X and Y to be the

components of T−(x, y) containing x and y, respectively, we see that deleting

Vx ∩ Vy separates C into CX −(Vx ∩ Vy) and CY −(Vx ∩ Vy). Neither of these

two subgraphs can be empty, since one contains {u, v}−(Vx ∩ Vy) and the

other contains {u′, v′}−(Vx ∩ Vy). But it is not possible to disconnect a cycle

into two nonempty subgraphs by deleting a single node, and so this yields a

contradiction.

When we use tree decompositions in the context of dynamic programming

algorithms, we would like, for the sake of efficiency, that they not have

too many pieces. Here is a simple way to do this. If we are given a tree

decomposition (T , {Vt}) of a graph G, and we see an edge (x, y) of T such

that Vx ⊆ Vy, then we can contract the edge (x, y) (folding the piece Vx into

the piece Vy) and obtain a tree decomposition of G based on a smaller tree.

Repeating this process as often as necessary, we end up with a nonredundant

tree decomposition: There is no edge (x, y) of the underlying tree such that

Vx ⊆ Vy.

Once we’ve reached such a tree decomposition, we can be sure that it does

not have too many pieces:

(10.16) Any nonredundant tree decomposition of an n-node graph has at

most n pieces.

Proof. We prove this by induction on n, the case n = 1 being clear. Let’s

consider the case in which n > 1. Given a nonredundant tree decomposition

(T , {Vt}) of an n-node graph, we first identify a leaf t of T. By the nonredun-

dancy condition, there must be at least one node in Vt that does not appear in

the neighboring piece, and hence (by the Coherence Property) does not appear

in any other piece. Let U be the set of all such nodes in Vt. We now observe that

by deleting t from T, and removing Vt from the collection of pieces, we obtain

a nonredundant tree decomposition of G−U. By our inductive hypothesis, this

tree decomposition has at most n − |U | ≤ n − 1 pieces, and so (T , {Vt}) has at

most n pieces.

580 Chapter 10 Extending the Limits of Tractability

While (10.16) is very useful for making sure one has a small tree decompo-

sition, it is often easier in the course of analyzing a graph to start by building

a redundant tree decomposition, and only later “condensing” it down to a

nonredundant one. For example, our tree decomposition for a graph G that is

a tree built a redundant tree decomposition; it would not have been as simple

to directly describe a nonredundant one.

Having thus laid the groundwork, we now turn to the algorithmic uses of

tree decompositions.

Dynamic Programming over a Tree Decomposition

We began by claiming that the Maximum-Weight Independent Set could be

solved efficiently on any graph for which the tree-width was bounded. Now it’s

time to deliver on this promise. Specifically, we will develop an algorithm that

closely follows the linear-time algorithm for trees. Given an n-node graph with

an associated tree decomposition of width w, it will run in time O(f (w) · n),

where f (·) is an exponential function that depends only on the width w, not on

the number of nodes n. And, as in the case of trees, although we are focusing

on Maximum-Weight Independent Set, the approach here is useful for many

NP-hard problems.

So, in a very concrete sense, the complexity of the problem has been

pushed off of the size of the graph and into the tree-width, which may be much

smaller. As we mentioned earlier, large networks in the real world often have

very small tree-width; and often this is not coincidental, but a consequence of

the structured or modular way in which they are designed. So, if we encounter

a 1,000-node network with a tree decomposition of width 4, the approach

discussed here takes a problem that would have been hopelessly intractable

and makes it potentially quite manageable.

Of course, this is all somewhat reminiscent of the Vertex Cover Algorithm

from Section 10.1. There we pushed the exponential complexity into the

parameter k, the size of the vertex cover being sought. Here we did not have

an obvious parameter other than n lying around, so we were forced to invent

a fairly nonobvious one: the tree-width.

To design the algorithm, we recall what we did for the case of a tree T.

After rooting T, we built the independent set by working our way up from the

leaves. At each internal node u, we enumerated the possibilities for what to

do with u—include it or not include it—since once this decision was fixed, the

problems for the different subtrees below u became independent.

The generalization for a graph G with a tree decomposition (T , {Vt}) of

width w looks very similar. We root the tree T and build the independent set

by considering the pieces Vt from the leaves upward. At an internal node t

10.4 Tree Decompositions of Graphs 581

of T, we confront the following basic question: The optimal independent set

intersects the piece Vt in some subset U, but we don’t know which set U it is.

So we enumerate all the possibilities for this subset U—that is, all possibilities

for which nodes to include from Vt and which to leave out. Since Vt may have

size up to w + 1, this may be 2w+1 possibilities to consider. But we now can

exploit two key facts: first, that the quantity 2w+1 is a lot more reasonable than

2n when w is much smaller than n; and second, that once we fix a particular

one of these 2w+1 possibilities—once we’ve decided which nodes in the piece

Vt to include—the separation properties (10.13) and (10.14) ensure that the

problems in the different subtrees of T below t can be solved independently.

So, while we settle for doing brute-force search at the level of a single piece, we

have an algorithm that is quite efficient at the global level when the individual

pieces are small.

Defining the Subproblems More precisely, we root the tree T at a node r.

For any node t, let Tt denote the subtree rooted at t. Recall that GTt
denotes

the subgraph of G induced by the nodes in all pieces associated with nodes

of Tt; for notational simplicity, we will also write this subgraph as Gt. For a

subset U of V, we use w(U) to denote the total weight of nodes in U; that is,

w(U) =
∑

u∈U wu.

We define a set of subproblems for each subtree Tt, one corresponding

to each possible subset U of Vt that may represent the intersection of the

optimal solution with Vt. Thus, for each independent set U ⊆ Vt, we write

ft(U) to denote the maximum weight of an independent set S in Gt, subject to

the requirement that S ∩ Vt = U. The quantity ft(U) is undefined if U is not

an independent set, since in this case we know that U cannot represent the

intersection of the optimal solution with Vt.

There are at most 2w+1 subproblems associated with each node t of T,

since this is the maximum possible number of independent subsets of Vt. By

(10.16), we can assume we are working with a tree decomposition that has

at most n pieces, and hence there are a total of at most 2w+1n subproblems

overall. Clearly, if we have the solutions to all these subproblems, we can

determine the maximum weight of an independent set in G by looking at the

subproblems associated with the root r: We simply take the maximum, over

all independent sets U ⊆ Vr, of fr(U).

Building Up Solutions Now we must show how to build up the solutions to

these sub-problems via a recurrence. It’s easy to get started: When t is a leaf,

ft(U) is equal to w(U) for each independent set U ⊆ Vt.

Now suppose that t has children t1, . . . , td, and we have already deter-

mined the values of fti(W) for each child ti and each independent set W ⊆ Vti
.

How do we determine the value of ft(U) for an independent set U ⊆ Vt?

582 Chapter 10 Extending the Limits of Tractability

U

Vt

Vt1
Vt2

No edge

No edge

Parent(t)

Fixing the choice of U
breaks all communication
between descendants
(and with the parent).

Figure 10.8 The subproblem ft(U) in the subgraph Gt. In the optimal solution to this

subproblem, we consider independent sets Si in the descendant subgraphs Gti
, subject

to the constraint that Si ∩ Vt = U ∩ Vti
.

Let S be the maximum-weight independent set in Gt subject to the require-

ment that S ∩ Vt = U; that is, w(S) = ft(U). The key is to understand how this

set S looks when intersected with each of the subgraphs Gti
, as suggested in

Figure 10.8. We let Si denote the intersection of S with the nodes of Gti
.

(10.17) Si is a maximum-weight independent set of Gti
, subject to the con-

straint that Si ∩ Vt = U ∩ Vti
.

10.4 Tree Decompositions of Graphs 583

Proof. Suppose there were an independent set S′
i of Gti

with the property that

S′
i ∩ Vt = U ∩ Vti

and w(S′
i) > w(Si). Then consider the set S′ = (S−Si) ∪ S′

i.

Clearly w(S′) > w(S). Also, it is easy to check that S′ ∩ Vt = U.

We claim that S′ is an independent set in G; this will contradict our choice

of S as the maximum-weight independent set in Gt subject to S ∩ Vt = U. For

suppose S′ is not independent, and let e = (u, v) be an edge with both ends in S′.

It cannot be that u and v both belong to S, or that they both belong to S′
i, since

these are both independent sets. Thus we must have u ∈ S−S′
i and v ∈ S′

i−S,

from which it follows that u is not a node of Gti
while v ∈ Gti

−(Vt ∩ Vti
). But

then, by (10.14), there cannot be an edge joining u and v.

Statement (10.17) is exactly what we need to design a recurrence relation

for our subproblems. It says that the information needed to compute ft(U)

is implicit in the values already computed for the subtrees. Specifically, for

each child ti, we need simply determine the value of the maximum-weight

independent set Si of Gti
, subject to the constraint that Si ∩ Vt = U ∩ Vti

. This

constraint does not completely determine what Si ∩ Vti
should be; rather, it

says that it can be any independent set Ui ⊆ Vti
such that Ui ∩ Vt = U ∩ Vti

.

Thus the weight of the optimal Si is equal to

max{fti(Ui) : Ui ∩ Vt = U ∩ Vti
and Ui ⊆ Vti

is independent}.

Finally, the value of ft(U) is simply w(U) plus these maxima added over the d

children of t—except that to avoid overcounting the nodes in U, we exclude

them from the contribution of the children. Thus we have

(10.18) The value of ft(U) is given by the following recurrence:

ft(U) = w(U) +
d

∑

i=1

max{fti(Ui) − w(Ui ∩ U) :

Ui ∩ Vt = U ∩ Vti
and Ui ⊆ Vti

is independent}.

The overall algorithm now just builds up the values of all the subproblems

from the leaves of T upward.

To find a maximum-weight independent set of G,

given a tree decomposition (T , {Vt}) of G:

Modify the tree decomposition if necessary so it is nonredundant

Root T at a node r

For each node t of T in post-order

If t is a leaf then

584 Chapter 10 Extending the Limits of Tractability

For each independent set U of Vt

ft(U) = w(U)

Else

For each independent set U of Vt

ft(U) is determined by the recurrence in (10.18)

Endif

Endfor

Return max {fr(U) : U ⊆ Vr is independent}.

An actual independent set of maximum weight can be found, as usual, by

tracing back through the execution.

We can determine the time required for computing ft(U) as follows: For

each of the d children ti, and for each independent set Ui in Vti
, we spend

time O(w) checking if Ui ∩ Vt = U ∩ Vti
, to determine whether it should be

considered in the computation of (10.18).

This is a total time of O(2w+1wd) for ft(U); since there are at most 2w+1

sets U associated with t, the total time spent on node t is O(4w+1wd). Finally,

we sum this over all nodes t to get the total running time. We observe that the

sum, over all nodes t, of the number of children of t is O(n), since each node

is counted as a child once. Thus the total running time is O(4w+1wn).

* 10.5 Constructing a Tree Decomposition
In the previous section, we introduced the notion of tree decompositions and

tree-width, and we discussed a canonical example of how to solve an NP-hard

problem on graphs of bounded tree-width.

The Problem

There is still a crucial missing piece in our algorithmic use of tree-width,

however. Thus far, we have simply provided an algorithm for Maximum-

Weight Independent Set on a graph G, provided we have been given a low-width

tree decomposition of G. What if we simply encounter G “in the wild,” and no

one has been kind enough to hand us a good tree decomposition of it? Can we

compute one on our own, and then proceed with the dynamic programming

algorithm?

The answer is basically yes, with some caveats. First we must warn that,

given a graph G, it is NP-hard to determine its tree-width. However, the

situation for us is not actually so bad, because we are only interested here

in graphs for which the tree-width is a small constant. And, in this case, we

will describe an algorithm with the following guarantee: Given a graph G of

tree-width less than w, it will produce a tree decomposition of G of width less

10.5 Constructing a Tree Decomposition 585

than 4w in time O(f (w) · mn), where m and n are the number of edges and

nodes of G, and f (·) is a function that depends only on w. So, essentially,

when the tree-width is small, there’s a reasonably fast way to produce a tree

decomposition whose width is almost as small as possible.

Designing and Analyzing the Algorithm

An Obstacle to Low Tree-Width The first step in designing an algorithm for

this problem is to work out a reasonable “obstacle” to a graph G having low

tree-width. In other words, as we try to construct a tree decomposition of low

width for G = (V , E), might there be some “local” structure we could discover

that will tell us the tree-width must in fact be large?

The following idea turns out to provide us with such an obstacle. First,

given two sets Y , Z ⊆ V of the same size, we say they are separable if some

strictly smaller set can completely disconnect them—specifically, if there is a

set S ⊆ V such that |S| < |Y| = |Z| and there is no path from Y−S to Z−S in

G−S. (In this definition, Y and Z need not be disjoint.) Next we say that a

set X of nodes in G is w-linked if |X| ≥ w and X does not contain separable

subsets Y and Z, such that |Y| = |Z| ≤ w.

For later algorithmic use of w-linked sets, we make note of the following

fact.

(10.19) Let G = (V , E) have m edges, let X be a set of k nodes in G, and let

w ≤ k be a given parameter. Then we can determine whether X is w-linked in

time O(f (k) · m), where f (·) depends only on k. Moreover, if X is not w-linked,

we can return a proof of this in the form of sets Y , Z ⊆ X and S ⊆ V such that

|S| < |Y| = |Z| ≤ w and there is no path from Y−S to Z−S in G−S.

Proof. We are trying to decide whether X contains separable subsets Y and Z

such that |Y| = |Z| ≤ w. We can first enumerate all pairs of sufficiently small

subsets Y and Z; since X only has 2k subsets, there are at most 4k such pairs.

Now, for each pair of subsets Y , Z, we must determine whether they are

separable. Let ℓ = |Y| = |Z| ≤ w. But this is exactly the Max-Flow Min-Cut

Theorem when we have an undirected graph with capacities on the nodes:

Y and Z are separable if and only there do not exist ℓ node-disjoint paths,

each with one end in Y and the other in Z. (See Exercise 13 in Chapter 7 for

the version of maximum flows with capacities on the nodes.) We can determine

whether such paths exist using an algorithm for flow with (unit) capacities on

the nodes; this takes time O(ℓm).

One should imagine a w-linked set as being highly self-entwined—it has

no two small parts that can be easily split off from each other. At the same

time, a tree decomposition cuts up a graph using very small separators; and

586 Chapter 10 Extending the Limits of Tractability

so it is intuitively reasonable that these two structures should be in opposition

to each other.

(10.20) If G contains a (w + 1)-linked set of size at least 3w, then G has

tree-width at least w.

Proof. Suppose, by way of contradiction, that G has a (w + 1)-linked set X of

size at least 3w, and it also has a tree decomposition (T , {Vt}) of width less

than w; in other words, each piece Vt has size at most w. We may further

assume that (T , {Vt}) is nonredundant.

The idea of the proof is to find a piece Vt that is “centered” with respect

to X, so that when some part of Vt is deleted from G, one small subset of X is

separated from another. Since Vt has size at most w, this will contradict our

assumption that X is (w + 1)-linked.

So how do we find this piece Vt? We first root the tree T at a node r; using

the same notation as before, we let Tt denote the subtree rooted at a node

t, and write Gt for GTt
. Now let t be a node that is as far from the root r as

possible, subject to the condition that Gt contains more than 2w nodes of X.

Clearly, t is not a leaf (or else Gt could contain at most w nodes of X); so

let t1, . . . , td be the children of t. Note that since each ti is farther than t from

the root, each subgraph Gti
contains at most 2w nodes of X. If there is a child ti

so that Gti
contains at least w nodes of X, then we can define Y to be w nodes

of X belonging to Gti
, and Z to be w nodes of X belonging to G−Gti

. Since

(T , {Vt}) is nonredundant, S = Vti
∩ Vt has size at most w − 1; but by (10.14),

deleting S disconnects Y−S from Z−S. This contradicts our assumption that

X is (w + 1)-linked.

So we consider the case in which there is no child ti such that Gti
contains

at least w nodes of X; Figure 10.9 suggests the structure of the argument in

this case. We begin with the node set of Gt1
, combine it with Gt2

, then Gt3
, and

so forth, until we first obtain a set of nodes containing more than w members

of X. This will clearly happen by the time we get to Gtd
, since Gt contains

more than 2w nodes of X, and at most w of them can belong to Vt. So suppose

our process of combining Gt1
, Gt2

, . . . first yields more than w members of X

once we reach index i ≤ d. Let W denote the set of nodes in the subgraphs

Gt1
, Gt2

, . . . , Gti
. By our stopping condition, we have |W ∩ X| > w. But since

Gti
contains fewer than w nodes of X, we also have |W ∩ X| < 2w. Hence we

can define Y to be w + 1 nodes of X belonging to W, and Z to be w + 1 nodes

of X belonging to V−W. By (10.13), the piece Vt is now a set of size at most

w whose deletion disconnects Y −Vt from Z−Vt. Again this contradicts our

assumption that X is (w + 1)-linked, completing the proof.

10.5 Constructing a Tree Decomposition 587

Gt

Between w and 2w elements of X

More than
2w elements
of X

Gt1

Gt2

Gt3

Gt4

Figure 10.9 The final step in the proof of (10.20).

An Algorithm to Search for a Low-Width Tree Decomposition Building on

these ideas, we now give a greedy algorithm for constructing a tree decomposi-

tion of low width. The algorithm will not precisely determine the tree-width of

the input graph G = (V , E); rather, given a parameter w, either it will produce

a tree decomposition of width less than 4w, or it will discover a (w + 1)-linked

set of size at least 3w. In the latter case, this constitutes a proof that the tree-

width of G is at least w, by (10.20); so our algorithm is essentially capable of

narrowing down the true tree-width of G to within a factor of 4. As discussed

earlier, the running time will have the form O(f (w) · mn), where m and n are

the number of edges and nodes of G, and f (·) depends only on w.

Having worked with tree decompositions for a little while now, one can

start imagining what might be involved in constructing one for an arbitrary

input graph G. The process is depicted at a high level in Figure 10.10. Our goal

is to make G fall apart into tree-like portions; we begin the decomposition

by placing the first piece Vt anywhere. Now, hopefully, G−Vt consists of

several disconnected components; we recursively move into each of these

components, placing a piece in each so that it partially overlaps the piece

Vt that we’ve already defined. We hope that these new pieces cause the graph

to break up further, and we thus continue in this way, pushing forward with

small sets while the graph breaks apart in front of us. The key to making this

algorithm work is to argue the following: If at some point we get stuck, and our

588 Chapter 10 Extending the Limits of Tractability

Step 2

Step 1

Step 3

Figure 10.10 A schematic view of the first three steps in the construction of a tree

decomposition. As each step produces a new piece, the goal is to break up the

remainder of the graph into disconnected components in which the algorithm can

continue iteratively.

small sets don’t cause the graph to break up any further, then we can extract

a large (w + 1)-linked set that proves the tree-width was in fact large.

Given how vague this intuition is, the actual algorithm follows it more

closely than you might expect. We start by assuming that there is no (w + 1)-

linked set of size at least 3w; our algorithm will produce a tree decomposition

provided this holds true, and otherwise we can stop with a proof that the tree-

width of G is at least w. We grow the underlying tree T of the decomposition,

and the pieces Vt, in a greedy fashion. At every intermediate stage of the algo-

rithm, we will maintain the property that we have a partial tree decomposition:

by this we mean that if U ⊆ V denotes the set of nodes of G that belong to at

least one of the pieces already constructed, then our current tree T and pieces

Vt should form a tree decomposition of the subgraph of G induced on U. We

define the width of a partial tree decomposition, by analogy with our defini-

tion for the width of a tree decomposition, to be one less than the maximum

piece size. This means that in order to achieve our goal of having a width of

less than 4w, it is enough to make sure that all pieces have size at most 4w.

If C is a connected component of G−U, we say that u ∈ U is a neighbor of

C if there is some node v ∈ C with an edge to u. The key behind the algorithm

is not to simply maintain a partial tree decomposition of width less than 4w,

but also to make sure the following invariant is enforced the whole time:

(∗) At any stage in the execution of the algorithm, each component C of

G−U has at most 3w neighbors, and there is a single piece Vt that contains

all of them.

10.5 Constructing a Tree Decomposition 589

Why is this invariant so useful? It’s useful because it will let us add a new

node s to T and grow a new piece Vs in the component C, with the confidence

that s can be a leaf hanging off t in the larger partial tree decomposition.

Moreover, (∗) requires there be at most 3w neighbors, while we are trying to

produce a tree decomposition of width less than 4w; this extra w gives our

new piece “room” to expand by a little as it moves into C.

Specifically, we now describe how to add a new node and a new piece

so that we still have a partial tree decomposition, the invariant (∗) is still

maintained, and the set U has grown strictly larger. In this way, we make at

least one node’s worth of progress, and so the algorithm will terminate in at

most n iterations with a tree decomposition of the whole graph G.

Let C be any component of G−U, let X be the set of neighbors of U, and let

Vt be a piece that, as guaranteed by (∗), contains all of X. We know, again by

(∗), that X contains at most 3w nodes. If X in fact contains strictly fewer than

3w nodes, we can make progress right away: For any node v ∈ C we define a

new piece Vs = X ∪ {v}, making s a leaf of t. Since all the edges from v into

U have their ends in X, it is easy to confirm that we still have a partial tree

decomposition obeying (∗), and U has grown.

Thus, let’s suppose that X has exactly 3w nodes. In this case, it is less

clear how to proceed; for example, if we try to create a new piece by arbitrarily

adding a node v ∈ C to X, we may end up with a component of C−{v} (which

may be all of C−{v}) whose neighbor set includes all 3w + 1 nodes of X ∪ {v},
and this would violate (∗).

There’s no simple way around this; for one thing, G may not actually have

a low-width tree decomposition. So this is precisely the place where it makes

sense to ask whether X poses a genuine obstacle to the tree decomposition or

not: we test whether X is a (w + 1)-linked set. By (10.19), we can determine

the answer to this in time O(f (w) · m), since |X| = 3w. If it turns out that X is

(w + 1)-linked, then we are all done; we can halt with the conclusion that G

has tree-width at least w, which was one acceptable outcome of the algorithm.

On the other hand, if X is not (w + 1)-linked, then we end up with Y , Z ⊆ X

and S ⊆ V such that |S| < |Y| = |Z| ≤ w + 1 and there is no path from Y−S to

Z−S in G−S. The sets Y, Z, and S will now provide us with a means to extend

the partial tree decomposition.

Let S′ consist of the nodes of S that lie in Y ∪ Z ∪ C. The situation is now

as pictured in Figure 10.11. We observe that S′ ∩ C is not empty: Y and Z each

have edges into C, and so if S′ ∩ C were empty, there would be a path from

Y−S to Z−S in G−S that started in Y, jumped immediately into C, traveled

through C, and finally jumped back into Z. Also, |S′| ≤ |S| ≤ w.

590 Chapter 10 Extending the Limits of Tractability

Vt

C

X

X � S� will be the new
piece of the tree
decomposition.

Y Z

S��C

Figure 10.11 Adding a new piece to the partial tree decomposition.

We define a new piece Vs = X ∪ S′, making s a leaf of t. All the edges

from S′ into U have their ends in X, and |X ∪ S′| ≤ 3w + w = 4w, so we still

have a partial tree decomposition. Moreover, the set of nodes covered by our

partial tree decomposition has grown, since S′ ∩ C is not empty. So we will be

done if we can show that the invariant (∗) still holds. This brings us exactly

the intuition we tried to capture when discussing Figure 10.10: As we add the

new piece X ∪ S′, we are hoping that the component C breaks up into further

components in a nice way.

Concretely, our partial tree decomposition now covers U ∪ S′; and where

we previously had a component C of G−U, we now may have several compo-

nents C ′ ⊆ C of G−(U ∪ S′). Each of these components C ′ has all its neighbors in

X ∪ S′; but we must additionally make sure there are at most 3w such neigh-

bors, so that the invariant (∗) continues to hold. So consider one of these

components C ′. We claim that all its neighbors in X ∪ S′ actually belong to

one of the two subsets (X−Z) ∪ S′ or (X−Y) ∪ S′, and each of these sets has

size at most |X| ≤ 3w. For, if this did not hold, then C ′ would have a neighbor

in both Y −S and Z−S, and hence there would be a path, through C ′, from

Y−S to Z−S in G−S. But we have already argued that there cannot be such

a path. This establishes that (∗) still holds after the addition of the new piece

and completes the argument that the algorithm works correctly.

Finally, what is the running time of the algorithm? The time to add a new

piece to the partial tree decomposition is dominated by the time required to

check whether X is (w + 1)-linked, which is O(f (w) · m). We do this for at

Solved Exercises 591

most n iterations, since we increase the number of nodes of G that we cover

in each iteration. So the total running time is O(f (w) · mn).

We summarize the properties of our tree decomposition algorithm as

follows.

(10.21) Given a graph G and a parameter w, the tree decomposition algorithm

in this section does one of the following two things:

. it produces a tree decomposition of width less than 4w, or

. it reports (correctly) that G does not have tree-width less than w.

The running time of the algorithm is O(f (w) · mn), for a function f (·) that

depends only on w.

Solved Exercises

Solved Exercise 1

As we’ve seen, 3-SAT is often used to model complex planning and decision-

making problems in artificial intelligence: the variables represent binary de-

cisions to be made, and the clauses represent constraints on these decisions.

Systems that work with instances of 3-SAT often need to represent situations

in which some decisions have been made while others are still undetermined,

and for this purpose it is useful to introduce the notion of a partial assignment

of truth values to variables.

Concretely, given a set of Boolean variables X = {x1, x2, . . . , xn}, we say

that a partial assignment for X is an assignment of the value 0, 1, or ? to each

xi; in other words, it is a function ρ : X → {0, 1, ?}. We say that a variable xi

is determined by the partial assignment if it receives the value 0 or 1, and

undetermined if it receives the value ?. We can think of a partial assignment

as choosing a truth value of 0 or 1 for each of its determined variables, and

leaving the truth value of each undetermined variable up in the air.

Now, given a collection of clauses C1, . . . , Cm, each a disjunction of

three distinct terms, we may be interested in whether a partial assignment is

sufficient to “force” the collection of clauses to be satisfied, regardless of how

we set the undetermined variables. Similarly, we may be interested in whether

there exists a partial assignment with only a few determined variables that

can force the collection of clauses to be satisfied; this small set of determined

variables can be viewed as highly “influential,” since their outcomes alone can

be enough to force the satisfaction of the clauses.

592 Chapter 10 Extending the Limits of Tractability

For example, suppose we are given clauses

(x1 ∨ x2 ∨ x4), (x2 ∨ x3 ∨ x4), (x2 ∨ x3 ∨ x5), (x1 ∨ x3 ∨ x6).

Then the partial assignment that sets x1 to 1, sets x3 to 0, and sets all other

variables to ? has only two determined variables, but it forces the collection

of clauses to be satisfied: No matter how we set the remaining four variables,

the clauses will be satisfied.

Here’s a way to formalize this. Recall that a truth assignment for X is an

assignment of the value 0 or 1 to each xi; in other words, it must select a truth

value for every variable and not leave any variables undetermined. We say that

a truth assignment ν is consistent with a partial assignment ρ if each variable

that is determined in ρ has the same truth value in both ρ and ν. (In other

words, if ρ(xi) �=?, then ρ(xi) = ν(xi).) Finally, we say that a partial assignment

ρ forces the collection of clauses C1, . . . , Cm if, for every truth assignment ν

that is consistent with ρ, it is the case that ν satisfies C1, . . . , Cm. (We will also

call ρ a forcing partial assignment.)

Motivated by the issues raised above, here’s the question. We are given a

collection of Boolean variables X = {x1, x2, . . . , xn}, a parameter b < n, and

a collection of clauses C1, . . . , Cm over the variables, where each clause is a

disjunction of three distinct terms. We want to decide whether there exists a

forcing partial assignment ρ for X, such that at most b variables are determined

by ρ. Give an algorithm that solves this problem with a running time of the

form O(f (b) · p(n, m)), where p(·) is a polynomial function, and f (·) is an

arbitrary function that depends only on b, not on n or m.

Solution Intuitively, a forcing partial assignment must “hit” each clause in

at least one place, since otherwise it wouldn’t be able to ensure the truth

value. Although this seems natural, it’s not actually part of the definition (the

definition just talks about truth assignments that are consistent with the partial

assignment), so we begin by formalizing and proving this intuition.

(10.22) A partial assignment ρ forces all clauses if and only if, for each clause

Ci, at least one of the variables in Ci is determined by ρ in a way that satis-

fies Ci.

Proof. Clearly, if ρ determines at least one variable in each Ci in a way

that satisfies it, then no matter how we construct a full truth assignment for

the remaining variables, all the clauses are already satisfied. Thus any truth

assignment consistent with ρ satisfies all clauses.

Now, for the converse, suppose there is a clause Ci such that ρ does not

determine any of the variables in Ci in a way that satisfies Ci. We want to show

that ρ is not forcing, which, according to the definition, requires us to exhibit

a consistent truth assignment that does not satisfy all clauses. So consider the

Solved Exercises 593

following truth assignment ν: ν agrees with ρ on all determined variables, it

assigns an arbitrary truth value to each undetermined variable not appearing

in Ci, and it sets each undetermined variable in Ci in a way that fails to satisfy

it. We observe that ν sets each of the variables in Ci so as not to satisfy it, and

hence ν is not a satisfying assignment. But ν is consistent with ρ, and so it

follows that ρ is not a forcing partial assignment.

In view of (10.22), we have a problem that is very much like the search

for small vertex covers at the beginning of the chapter. There we needed to

find a set of nodes that covered all edges, and we were limited to choosing at

most k nodes. Here we need to find a set of variables that covers all clauses

(and with the right true/false values), and we’re limited to choosing at most

b variables.

So let’s try an analogue of the approach we used for finding a small vertex

cover. We pick an arbitrary clause Cℓ, containing xi, xj, and xk (each possibly

negated). We know from (10.22) that any forcing assignment ρ must set one

of these three variables the way it appears in Cℓ, and so we can try all three

of these possibilities. Suppose we set xi the way it appears in Cℓ; we can then

eliminate from the instance all clauses (including Cℓ) that are satisfied by this

assignment to xi, and consider trying to satisfy what’s left. We call this smaller

set of clauses the instance reduced by the assignment to xi. We can do the same

for xj and xk. Since ρ must determine one of these three variables the way they

appear in Cℓ, and then still satisfy what’s left, we have justified the following

analogue of (10.3). (To make the terminology a bit easier to discuss, we say

that the size of a partial assignment is the number of variables it determines.)

(10.23) There exists a forcing assignment of size at most b if and only if there

is a forcing assignment of size at most b − 1 on at least one of the instances

reduced by the assignment to xi, xj, or xk.

We therefore have the following algorithm. (It relies on the boundary cases

in which there are no clauses (when by definition we can declare success) and

in which there are clauses but b = 0 (in which case we declare failure).

To search for a forcing partial assignment of size at most b:

If there are no clauses, then by definition we have

a forcing assignment

Else if b = 0 then by (10.22) there is no forcing assignment

Else let Cℓ be an arbitrary clause containing variables xi , xj , xk

For each of xi , xj , xk:

Set xi the way it appears in Cℓ

Reduce the instance by this assignment

594 Chapter 10 Extending the Limits of Tractability

Recursively check for a forcing assignment of size at

most b − 1 on this reduced instance

Endfor

If any of these recursive calls (say for xi) returns a

forcing assignment ρ′ of size most b − 1 then

Combining ρ′ with the assignment to xi is the desired answer

Else (none of these recursive calls succeeds)

There is no forcing assignment of size at most b

Endif

Endif

To bound the running time, we consider the tree of possibilities being

searched, just as in the algorithm for finding a vertex cover. Each recursive

call gives rise to three children in this tree, and this goes on to a depth of at

most b. Thus the tree has at most 1+ 3 + 32 + . . . + 3b ≤ 3b+1 nodes, and at

each node we spend at most O(m + n) time to produce the reduced instances.

Thus the total running time is O(3b(m + n)).

Exercises

1. In Exercise 5 of Chapter 8, we claimed that the Hitting Set Problem was

NP-complete. To recap the definitions, consider a set A = {a1, . . . , an} and a

collection B1, B2, . . . , Bm of subsets of A. We say that a set H ⊆ A is a hitting

set for the collection B1, B2, . . . , Bm if H contains at least one element from

each Bi—that is, if H ∩ Bi is not empty for each i. (So H “hits” all the sets

Bi.)

Now suppose we are given an instance of this problem, and we’d like

to determine whether there is a hitting set for the collection of size at

most k. Furthermore suppose that each set Bi has at most c elements, for

a constant c. Give an algorithm that solves this problem with a running

time of the form O(f (c, k) · p(n, m)), where p(·) is a polynomial function,

and f (·) is an arbitrary function that depends only on c and k, not on n

or m.

2. The difficulty in 3-SAT comes from the fact that there are 2n possible

assignments to the input variables x1, x2, . . . , xn, and there’s no apparent

way to search this space in polynomial time. This intuitive picture, how-

ever, might create the misleading impression that the fastest algorithms

for 3-SAT actually require time 2n. In fact, though it’s somewhat counter-

intuitive when you first hear it, there are algorithms for 3-SAT that run

in significantly less than 2n time in the worst case; in other words, they

Exercises 595

determine whether there’s a satisfying assignment in less time than it

would take to enumerate all possible settings of the variables.

Here we’ll develop one such algorithm, which solves instances of 3-

SAT in O(p(n) · (
√

3)n) time for some polynomial p(n). Note that the main

term in this running time is (
√

3)n, which is bounded by 1.74n.

(a) For a truth assignment � for the variables x1, x2, . . . , xn, we use �(xi)

to denote the value assigned by � to xi. (This can be either 0 or

1.) If � and �′ are each truth assignments, we define the distance

between � and �′ to be the number of variables xi for which they

assign different values, and we denote this distance by d(�, �′). In

other words, d(�, �′) = |{i : �(xi) �= �′(xi)}|.

A basic building block for our algorithm will be the ability to

answer the following kind of question: Given a truth assignment �

and a distance d, we’d like to know whether there exists a satisfying

assignment �′ such that the distance from � to �′ is at most d.

Consider the following algorithm, Explore(�, d), that attempts to

answer this question.

Explore(�,d):

If � is a satisfying assignment then return "yes"

Else if d = 0 then return "no"

Else

Let Ci be a clause that is not satisfied by �

(i.e., all three terms in Ci evaluate to false)

Let �1 denote the assignment obtained from � by

taking the variable that occurs in the first term of

clause Ci and inverting its assigned value

Define �2 and �3 analogously in terms of the

second and third terms of the clause Ci

Recursively invoke:

Explore(�1,d − 1)

Explore(�2,d − 1)

Explore(�3,d − 1)

If any of these three calls returns "yes"

then return "yes"

Else return "no"

Prove that Explore(�, d) returns “yes” if and only if there exists

a satisfying assignment �′ such that the distance from � to �′ is at

most d. Also, give an analysis of the running time of Explore(�, d)

as a function of n and d.

596 Chapter 10 Extending the Limits of Tractability

Figure 10.12 A triangulated

cycle graph: The edges form

the boundary of a convex

polygon together with a set

of line segments that divide

its interior into triangles.

(b) Clearly any two assignments � and �′ have distance at most n

from each other, so one way to solve the given instance of 3-SAT

would be to pick an arbitrary starting assignment � and then run

Explore(�, n). However, this will not give us the running time we

want.

Instead, we will need to make several calls to Explore, from

different starting points �, and search each time out to more limited

distances. Describe how to do this in such a way that you can solve

the instance of 3-SAT in a running time of only O(p(n) · (
√

3)n).

3. Suppose we are given a directed graph G = (V , E), with V = {v1, v2, . . . , vn},
and we want to decide whether G has a Hamiltonian path from v1 to vn.

(That is, is there a path in G that goes from v1 to vn, passing through every

other vertex exactly once?)

Since the Hamiltonian Path Problem is NP-complete, we do not ex-

pect that there is a polynomial-time solution for this problem. However,

this does not mean that all nonpolynomial-time algorithms are equally

“bad.” For example, here’s the simplest brute-force approach: For each

permutation of the vertices, see if it forms a Hamiltonian path from v1

to vn. This takes time roughly proportional to n!, which is about 3 × 1017

when n = 20.

Show that the Hamiltonian Path Problem can in fact be solved in time

O(2n · p(n)), where p(n) is a polynomial function of n. This is a much better

algorithm formoderate values of n; for example, 2n is only about amillion

when n = 20.

4. We say that a graph G = (V , E) is a triangulated cycle graph if it consists

of the vertices and edges of a triangulated convex n-gon in the plane—in

other words, if it can be drawn in the plane as follows.

The vertices are all placed on the boundary of a convex set in the plane

(wemay assume on the boundary of a circle), with each pair of consecutive

vertices on the circle joined by an edge. The remaining edges are then

drawn as straight line segments through the interior of the circle, with no

pair of edges crossing in the interior. We require the drawing to have the

following property. If we let S denote the set of all points in the plane that

lie on vertices or edges of the drawing, then each bounded component of

the plane after deleting S is bordered by exactly three edges. (This is the

sense in which the graph is a “triangulation.”)

A triangulated cycle graph is pictured in Figure 10.12.

Exercises 597

Prove that every triangulated cycle graph has a tree decomposition

of width at most 2, and describe an efficient algorithm to construct such

a decomposition.

5. The Minimum-Cost Dominating Set Problem is specified by an undirected

graph G = (V , E) and costs c(v) on the nodes v ∈ V. A subset S ⊂ V is said

to be a dominating set if all nodes u ∈ V−S have an edge (u, v) to a node v

in S. (Note the difference between dominating sets and vertex covers: in

a dominating set, it is fine to have an edge (u, v) with neither u nor v in

the set S as long as both u and v have neighbors in S.)

(a) Give a polynomial-time algorithm for the Dominating Set Problem for

the special case in which G is a tree.

(b) Give a polynomial-time algorithm for the Dominating Set Problem for

the special case in which G has tree-width 2, and we are also given a

tree decomposition of G with width 2.

6. The Node-Disjoint Paths Problem is given by an undirected graph G and

k pairs of nodes (si, ti) for i = 1, . . . , k. The problem is to decide whether

there are node-disjoint paths Pi so that path Pi connects si to ti. Give a

polynomial-time algorithm for the Node-Disjoint Paths Problem for the

special case in which G has tree-width 2, and we are also given a tree

decomposition T of G with width 2.

7. The chromatic number of a graph G is the minimum k such that it has a

k-coloring. As we saw in Chapter 8, it is NP-complete for k ≥ 3 to decide

whether a given input graph has chromatic number ≤ k.

(a) Show that for every natural number w ≥ 1, there is a number k(w) so

that the following holds. If G is a graph of tree-width at most w, then

G has chromatic number at most k(w). (The point is that k(w) depends

only on w, not on the number of nodes in G.)

(b) Given an undirected n-node graph G = (V , E) of tree-width at most

w, show how to compute the chromatic number of G in time O(f (w) ·
p(n)), where p(·) is a polynomial but f (·) can be an arbitrary function.

8. Consider the class of 3-SAT instances in which each of the n variables

occurs—counting positive and negated appearances combined—in ex-

actly three clauses. Show that any such instance of 3-SAT is in fact sat-

isfiable, and that a satisfying assignment can be found in polynomial

time.

9. Give a polynomial-time algorithm for the following problem. We are given

a binary tree T = (V , E) with an even number of nodes, and a nonnegative

weight on each edge. We wish to find a partition of the nodes V into two

598 Chapter 10 Extending the Limits of Tractability

sets of equal size so that the weight of the cut between the two sets is

as large as possible (i.e., the total weight of edges with one end in each

set is as large as possible). Note that the restriction that the graph is a

tree is crucial here, but the assumption that the tree is binary is not. The

problem is NP-hard in general graphs.

Notes and Further Reading

The first topic in this chapter, on how to avoid a running time of O(knk+1) for

Vertex Cover, is an example of the general theme of parameterized complexity:

for problems with two such “size parameters” n and k, one generally prefers

running times of the form O(f (k) · p(n)), where p(·) is a polynomial, rather

than running times of the form O(nk). A body of work has grown up around

this issue, including a methodology for identifying NP-complete problems that

are unlikely to allow for such improved running times. This area is covered in

the book by Downey and Fellows (1999).

The problem of coloring a collection of circular arcs was shown to be

NP-complete by Garey, Johnson, Miller, and Papadimitriou (1980). They also

described how the algorithm presented in this chapter follows directly from

a construction due to Tucker (1975). Both Interval Coloring and Circular-

Arc Coloring belong to the following class of problems: Take a collection of

geometric objects (such as intervals or arcs), define a graph by joining pairs

of objects that intersect, and study the problem of coloring this graph. The

book on graph coloring by Jensen and Toft (1995) includes descriptions of a

number of other problems in this style.

The importance of tree decompositions and tree-width was brought into

prominence largely through the work of Robertson and Seymour (1990). The

algorithm for constructing a tree decomposition described in Section 10.5 is

due to Diestel et al. (1999). Further discussion of tree-width and its role in both

algorithms and graph theory can be found in the survey by Reed (1997) and

the book by Diestel (2000). Tree-width has also come to play an important role

in inference algorithms for probabilistic models in machine learning (Jordan

1998).

Notes on the Exercises Exercise 2 is based on a result of Uwe Schöning; and

Exercise 8 is based on a problem we learned from Amit Kumar.

